Monday, June 13, 2022

Random forest Image Classification Using Google Earth Engine (GEE code for RF classification)

Random forest (RF) Image Classification Using Google Earth Engine (GEE):

Here we will be doing satellite image processing by Google Earth Engine (GEE), Here we will classify random forest (RF) images using Google Earth engine (GEE).

We've put the whole process of this RF classification on YouTube, and the programming code is given below to make the process easier.

YouTube Link: https://youtu.be/moFOIpm3JcI

CODE:

-------------------------------------------------------------------------------------------------------------

Map.centerObject(studyarea,11);


var SFCCvis = {bands: ['B8', 'B4', 'B3'], max: 3000};


////////Sentinel-2 Data 2020////////

var S2020 = ee.ImageCollection('COPERNICUS/S2')

                  .filterDate('2021-03-01', '2021-03-31')

                  .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20))

                  .filterBounds(studyarea);

print(S2020, 'S2 Data 2020');


var listS2020dataset=S2020.toList(S2020.size());

print(listS2020dataset, 'Data list_2020');


var img1 = ee.Image(listS2020dataset.get(5)).clip(studyarea);

Map.addLayer(img1, SFCCvis, 'SFCC Image1');

//Cloudfree scenes: 0,2,4,5



var imgcollection=ee.ImageCollection([ee.Image(listS2020dataset.get(0)),

ee.Image(listS2020dataset.get(2)),ee.Image(listS2020dataset.get(4)),

ee.Image(listS2020dataset.get(5))])

.select(['B2','B3','B4','B5','B6','B7','B8','B8A','B11','B12']);

print(imgcollection, 'imgcollection');



////Image stacking

var stackCollection = function(imgcollection) {

  var first = ee.Image(imgcollection.first()).select([]);

  var appendBands = function(image, previous) {

    return ee.Image(previous).addBands(image);

  };

  return ee.Image(imgcollection.iterate(appendBands, first));

};


var image_stack = stackCollection(imgcollection);

print(image_stack, 'Image Stack');




////// Image Classification

// Class Merging

var polygons=Forest.merge(Cropland).merge(Fallow).merge(Waterbody).merge(Sand);

print(polygons, 'Training data');


var sample = polygons.randomColumn();

var trainingsample = sample.filter('random <= 0.75');

var validationsample = sample.filter('random > 0.75');

print(trainingsample, 'Training sample');

print(validationsample, 'Validation sample');



var training = image_stack.sampleRegions({

    collection: trainingsample,

    properties: ['Class'],

    scale: 20

});

print(training, 'Training data Band values');


var validation = image_stack.sampleRegions({

    collection: validationsample,

    properties: ['Class'],

    scale: 20

});



//RF Classifier Model Building

//ee.Classifier.smileRandomForest(numberOfTrees, 

//variablesPerSplit, minLeafPopulation, bagFraction, maxNodes, seed)

var RFclassifier = ee.Classifier.smileRandomForest(200).train(training, 'Class');


var Classified = image_stack.classify(RFclassifier).clip(studyarea);

//print(Classified, 'Classified');


var Palette = [

  'green', //Forest

  'yellow', //Cropland 

  '#a89e32', //Fallow

  'blue', //Waterbody

  'grey', //Sand

];

Map.addLayer(Classified, {palette: Palette, min: 1, max: 5}, 'Classified map');


//// Accuracy Assessment

// Get a confusion matrix and overall accuracy for the training sample.

var trainAccuracy = RFclassifier.confusionMatrix();

print('Training error matrix', trainAccuracy);

print('Training overall accuracy', trainAccuracy.accuracy());


// Get a confusion matrix and overall accuracy for the validation sample.

validation = validation.classify(RFclassifier);

var validationAccuracy = validation.errorMatrix('Class', 'classification');

print('Validation error matrix', validationAccuracy);

print('Validation accuracy', validationAccuracy.accuracy());



///// Variable Importance

var explain = RFclassifier.explain();

print(explain, 'Explain');


//Variable Importance of RF Classifier

var variable_importance = ee.Feature(null, ee.Dictionary(explain).get('importance'));


// Chart of Variable Importance of RF Classifier

var chartTitle = 'Random Forest: Bands Variable Importance';

var chart =

    ui.Chart.feature.byProperty(variable_importance)

      .setChartType('BarChart')

      .setOptions({

        title: chartTitle,

        legend: {position: 'none'},

        hAxis: {title: 'Importance'},

        vAxis: {title: 'Bands'}

      });

// Chart: Location and Plot

chart.style().set({

  position: 'bottom-left',

  width: '400px',

  height: '400px'

});

Map.add(chart);



////// Export

Export.image.toDrive({

  image: Classified,

  description: 'RF_Classified_map',

  region: studyarea,

  scale: 20,

  fileFormat: 'GeoTIFF',

  maxPixels: 1e9,

});


//https://code.earthengine.google.com/73aa2cc676bdca3f0c866472b3097d60

-------------------------------------------------------------------------------------------------------------

We hope you find this code useful. Stay tuned with us to find out and learn new things like this. If there is any problem you can let us know by commenting below or contacting us.


3 comments:

  1. this is helping me to finish my final assignment. thanks a lot!!

    ReplyDelete
  2. I Really congrat whit this great job,... awesom,... I try to do this whit my own self scritp but de Accuracy overall dons'nt work, it could be a little help whti this please?

    ReplyDelete
  3. I Really congrat you with this great job,... awesome,... I try to do this with my own self script but de Accuracy overall doesn't work, could you give me a little help with this please?, rhank you on advance.

    ReplyDelete

If you have any doubt, Please let me know